Computer-Aided Compositional Design and
Verification for Modular Robots

Tarik Tosun*, Gangyuan Jing*, Hadas Kress-Gazit, and Mark Yim

Abstract To take full advantage of the flexibility of a modular robot system, users
must be able to create and verify new configurations and behaviors quickly. We
present a design framework that facilitates rapid creation of new configurations and
behaviors through composition of existing ones, and tools to verify configurations
and behaviors as they are being created. New configurations are created by com-
bining existing sub-configurations, for example combining four legs and a body to
create a walking robot. Behaviors are associated with each configuration, so that
when sub-configurations are composed, their associated behaviors are immediately
available for composition as well. We introduce a new motion description language
(Series-Parallel Action Graphs) that facilitates the rapid creation of complex behav-
iors by composition of simpler behaviors. We provide tools that automatically verify
configurations and behaviors during the design process, allowing the user to iden-
tify problems early and iterate quickly. In addition to verification, users can evaluate
their configurations and behaviors in a physics-based simulator.

1 Introduction

Modular reconfigurable robot systems have been studied extensively for several
decades. These systems distinguish themselves from conventional robotic systems

Tarik Tosun
University of Pennsylvania, Philadelphia PA, e-mail: tarikt@grasp.upenn.edu

Gangyuan Jing
Cornell University, Ithaca NY, e-mail: gj56@cornell.edu

Hadas Kress-Gazit
Cornell University, Ithaca NY, e-mail: hadaskg@cornell.edu

Mark Yim
University of Pennsylvania, Philadelphia PA, e-mail: yim@grasp.upenn.edu

* Tarik Tosun and Gangyuan Jing contributed equally to this work.
This work was funded by NSF grant numbers CNS-1329620 and CNS-1329692.

tarikt@grasp.upenn.edu
gj56@cornell.edu
hadaskg@cornell.edu
yim@grasp.upenn.edu

2 Tarik Tosun*, Gangyuan Jing*, Hadas Kress-Gazit, and Mark Yim

in their ability to transform into different shapes to address a wide variety of tasks.
They promise to be versatile, robust, and low cost [27]. Dozens of groups have
built different kinds of reconfigurable robots [8| [13]], and introduced approaches for
programming them [19} 22| 30]. Over 800 papers, a book [11]], and a survey [28]
have been written on the subject.

This versatility places an additional burden on the user, because solving problems
with modular robots involves not only writing programs, but also determining the
best physical form for the task at hand. If this complexity is not appropriately man-
aged, it will present a significant barrier to using modular robots to address practical
tasks [26]). If the user is free to create any new design to solve a new task, but must
program the design from scratch every time, creating new designs will be a huge
amount of effort, and the advantage of versatile modular hardware will be defeated.

Software modularity is a well-established practice for developing large maintain-
able systems and avoiding duplication of effort. In robotics, software behaviors are
inextricably linked to the hardware they control, resulting in challenges to making
modularity effective. Significant progress has been made on these fronts in tradi-
tional robotics, most notably ROS [[18] which provides inter-process communication
and standard libraries for common robot tasks, as well as verification tools [10]. In
modular robotics, the challenge is different. Modular robot systems are not usually
optimized for specific tasks, so in order to use them most effectively, we must take
advantage of their flexibility. To do so, a user must be able to generate and verify
configurations and behaviors as quickly as possible.

Toward that end, we present a design framework that facilitates the rapid creation
of new configurations and behaviors through composition, and tools to verify them
while they are being created. New configurations are created by combining exist-
ing sub-configurations, for example combining a four-legged walking robot with
a two-fingered gripper to form a mobile manipulator, like the “Centaur” config-
uration shown in Figure [I| . Behaviors are associated with each configuration, so
that when sub-configurations are composed, their associated behaviors are imme-
diately available for use. The Centaur in Figure [I] for example, can immediately
execute the walking behavior of its component four-legged base. We introduce a
new motion description language (Series-Parallel Action Graphs, Section that
facilitates the rapid creation of complex behaviors by composition of simpler be-
haviors (for example, composing “Grasp” and “Walk” behaviors to make the Cen-
taur pick up and carry an object). We provide tools that automatically verify con-
figurations and behaviors during the design process, identifying conflicting com-
mands, self-collision, loss of gravitational stability, and forces exceeding the limits
of safety for actuators and connectors. This allows users to identify problems early
and iterate quickly on complex new designs. In addition to verification, users can
evaluate their configurations and behaviors in a physics-based simulator. The soft-
ware we have developed is open-source, and will be made freely available online at:
http://modlabupenn.org/compositional-design/.

The remainder of this paper provides a description of the structure and algorith-
mic components of our framework. In Section 2| we discuss relevant background
material. In Section [3]we introduce terminology and concepts used elsewhere in the

Computer-Aided Compositional Design and Verification for Modular Robots 3

paper. In Section [we describe the algorithmic basis for the three major compo-
nents of our framework - design composition, behavior composition, and verifica-
tion. In Section[5] we discuss the open-source software tools used to implement our
framework. In Section[6} we provide examples highlighting important aspects of the
framework, including a demonstration of the user’s workflow.

Fig. 1: The Centaur is a mobile manipulator made of 29 modules. The framework we
present provides tools that help users quickly create, program, and verify complex
designs like the Centaur by composing existing designs and behaviors from a library.

2 Related Work

In some respects, our work parallels the efforts of Mehta [16]] and Bezzo [3],
who aim to create and program printable robots from novice users’ design speci-
fications. Users create new designs by composing existing elements from a design
library, and appropriate circuitry and control software are automatically generated
as physical designs are assembled. The framework we present is intended specifi-
cally for modular robots, and consequently the workflow and design considerations
are fundamentally different from that presented by Mehta and Bezzo. In traditional
robot design (or printable robot design), hardware and software are somewhat de-
coupled - hardware is designed and built once, and then programmed many times.
In the case of a modular robot system, the system can be reconfigured to meet new
tasks, so hardware configuration and behavior programming go hand in hand. We
intend our system to be fast enough that the user could conceivably develop and
program a new configuration for every new task - configurations are built once, and
programmed once. Where Mehta et al. provide many facilities to generate and ver-
ify low-level behaviors (e.g. motor drivers appropriate for motors), we do so for
high-level behaviors.

A significant amount of work has been done in developing behaviors and soft-
ware for modular robots. Genetic algorithms have been applied for the automated
generation of designs and behaviors [9]. Other work has focused on distributed con-
trol [24]], hormone-based control [19], and central pattern generators [21]].

4 Tarik Tosun*, Gangyuan Jing*, Hadas Kress-Gazit, and Mark Yim

Efforts have also been made to generate behaviors by automatically identifying
the “role” a module should play based on its place in a connected structure [22]].
Functionality is propagated downward: based on a high-level goal (like “walk”) and
a connected structure of modules, functional sub-structures (like legs and a spine)
are automatically identified, and modules are directed to execute appropriate roles
in a distributed fashion. In our work, modular structures are similarly associated
with appropriate behaviors. Rather than identifying roles in a top-down fashion, we
build designs with the desired functionality from the bottom up. The user creates
new designs by composing sub-components and associated behaviors from a library,
building a new structure that can definitely execute the desired behavior.

While significant progress has been made in the automated generation of modular
robot behaviors, automated systems are not yet capable of making modular robots
truly useful in practice [28]]. The need for new programming techniques to manage
the complexity of modular robot systems has been acknowledged in the literature
[26]. Historically, gait tables have been a commonly used format in which open-
loop kinematic behaviors can be easily encoded [25]. Phased automata have also
been presented as a way to easily create scalable gaits for large numbers of modular
robots [30]. In this paper, we introduce a novel motion description language that
enables users to quickly create behaviors for modular robots.

A number of robot simulators have been developed, including simulators specif-
ically for modular robots [5]]. For our work, we opted to use Gazebo [12] because
of its growing popularity in the robotics community. While our software currently
only supports the SMORES robot [7]], other modular robot designs can easily be
incorporated. Future work includes incorporating support for the CKBot robot [[6].

Our framework assists users in verifying design validity by identifying conflict-
ing commands, self-collision, loss of gravitational stability, and forces exceeding
the limits of safety for actuators and connectors. In existing literature, some of these
conditions have been checked in the context of modular robot reconfiguration plan-
ning [4] and motion planning [29]. To our knowledge, there is no modular robot
design tool that verifies these conditions to provide assistance to a human designer.

3 Definitions

In this section, we present concepts and terms which will be used later in the
paper.

Definition 1 (Module). A module is a small robot that can move, respond to
commands, and attach to other modules. Formally, we define a module as .#Z =
(" D” X,A,K). The rigid body displacement, ” D < SE(3) gives the position
and orientation of the module body frame in the world frame % . The state of the
module, X = [x1,x2,...,X4], is a d-dimensional vector representing the d joint an-
gles of the module. A = {aj,ay,...,a;} is the set of attachment points where the
module can connect to other modules. The module’s forward kinematics function,
K : (X,a;) — SE(3) returns /D% (the displacement of attachment point a; in the

Computer-Aided Compositional Design and Verification for Modular Robots 5

module frame) as a function of X. Figure 2] shows a schematic representation of a
module with four attachment points.

In this paper, we demonstrate our framework using a homogeneous modular
robot system (all modules are identical). The framework could be extended to het-
erogeneous systems by including more information in the definition of a module -
for example, if the system used multiple kinds of connectors, labels on the attach-
ment points could be included.

DoF =2 DoF #4
Left Wheel Tirt X
N > e

DoF#3

Pan
(OH®)
Drmle 2) e :)1?

Rielit Wheel

(©))

Rear skid top
and bottom

Fig. 2: From left: (1) A photo of a SMORES module with four attachment points
(left, right, front, and back), (2) its graphical representation, (3) a photo of a config-
uration with three modules, and (4) its graphical representation.

Definition 2 (Configuration). A configuration is a contiguous set of connected
modules which we treat as a single robot. The identity of a configuration is deter-
mined by its connective structure; configurations can be represented by graphs with
nodes representing modules and edges representing connections between modules.
Individual modules are considered interchangeable (as long as they are of the same
type).

In this paper, we present an object-oriented design framework for modular robot
systems, and treat configurations as the fundamental objects. Rather than defining
configurations only by the topology of their component modules, we define them
recursively, as being composed of connected sub-configurations. A single module is
considered the smallest configuration.

Formally, we define a configuration as ¢ = (Cy,M,E,0,X,B). Here, C =
{€1,%5,...,€,} is a set of sub-configurations. y: C — 2™ is a function map-
ping a configuration %; € C to its set of modules, M = Uycc¥(€). E is a set
of connections between modules. Elements of E are pairs of attachment points,
(M.ai, Mj.a;) € E, where M;, M; € M, M; # M;, and a; € M;.A, aj € M;.A.
The orientation of one attachment point relative to another is represented by the
labeling function & : E — SO(3), returning “#%R*#i-% The state of the configu-
ration is X = J ey -#;.X. Finally, associated with each configuration is a set of
behaviors B (see Definition 3).

Figure[2]shows a photo of a configuration composed of three modules, each with
four attachment points, and its graphical representation. Blue zigzag lines represent
connections between modules, and the label of each connection shows the angle

6 Tarik Tosun*, Gangyuan Jing*, Hadas Kress-Gazit, and Mark Yim

offset of that connection. We can compute forward kinematics for the entire config-
uration by composing displacements module-to-module. Let any module .#y € M
have fixed displacement ' D in the world frame. Let .#; : (M.a;, M.ay) € E
be connected to .#¢. We can find 7 D by composing displacements as follows:

WD///i :[WDA///f][{//[fDaf] [afDa,-} [///iD“i]T

Dk (g0 |°)] it

where e = (#;.a;, My.ay). To find the world-frame displacements of all other
modules, we may traverse the connections of the configuration, repeatedly compos-
ing displacements in the manner above.

Definition 3 (Behavior). A behavior B : (t,X) — X is a programmed sequence
of movements defined over the joints of a specific configuration, and intended to
produce a desired effect - a gait for walking is one example. Behaviors determine
the controller setpoints X, for a configuration as a function of state X and time .
In this paper, we represent behaviors as series-parallel action graphs, described in
detail in section4.2]

Definition 4 (Controller). A controller is a position or velocity servo for one DoF
of a modular robot. A controller takes as input a desired position or angular velocity,
and drives the error between the desired and actual state of the DoF it controls to
zZero over time.

4 Approach and Algorithm

The three major components of our framework are configuration composition,
behavior composition, and verification of configurations and behaviors. Together,
these three components provide a streamlined workflow to quickly create functional
robots by leveraging an existing library of designs and behaviors. Combining exist-
ing designs and behaviors into new ones allows users to create large, complicated,
functional designs.

4.1 Configuration Composition

Before discussing configuration composition, we will first define a set of connec-
tions Ec between configurations in a given set C as (%.//li.ai,%j.j/j.aj) € Ec,
where 6;,6; € C, M; € ¥(6;), #j € Y(€}), and a; € #;.A, aj € M;.A. We form a
graph with configurations in C as nodes and connections in E¢ as edges.

Given a set of configurations C and a set E¢ of connections between them, con-
figuration composition combines all configurations in C to a single configuration

Computer-Aided Compositional Design and Verification for Modular Robots 7

% that includes all modules and connections from C and E¢. The composed con-
figuration is * = (C*,v,M,E,8,X,B), where C*, M, E, and B are the unions of the
corresponding sets of the sub-configurations in C.

4.2 Behavior Composition: Series-Parallel Action Graphs

The modular robotics community has developed a number of methods to create
behaviors, including gait tables [25], phased automata [30], hormone-based control
[19], and role-based control [22]]. Phased automata, hormone, and role-based control
are typically used to specify a single, cyclic behavior (such as a gait for locomotion)
in a distributed fashion. These methods have good scaling and robustness properties,
but are not well-suited to specifying the non-cyclic, globally coordinated behaviors
required for many tasks (like picking up and moving an object with an arm).

The simplicity and clarity of gait tables makes them appealing for our applica-
tion. However, gait tables are often difficult to compose or re-use, and also hard to
scale to very complicated designs. The motion description language we present al-
lows low-level behaviors to be combined in series and parallel to create new higher-
level behaviors, encapsulating complexity and facilitating code re-use. The resulting
programs are expressive, and have a nested structure that is easy to understand and
debug.

The atoms of the language are called actions. Similar to a single entry of a gait
table, an action specifies a controller setpoint for a single DoF of a module. Unlike
a gait table entry, actions do not have explicit timestamps. Rather, each action has
an associated interrupt condition, which is a boolean function of the (sensed) state
of the robot. Similar to a state transition in a finite state machine (FSM), when the
interrupt condition is met the action is considered complete, and execution moves on
to the next action. Interrupts allow the programmer to precisely specify behaviors in
a natural way: rather than specifying a timed sequence of motions, the programmer
specifies an ordered sequence of actions and has some assurance that an action will
not begin until the robot has actually achieved the goal state of the previous action.
Actions may optionally include a timeout, which causes the action to be considered
complete automatically once time runs out.

An important distinction between actions in our language and states in a tradi-
tional FSM is that multiple actions may execute in parallel. Actions are combined
through parallel and series composition to create behaviors. When two actions are
composed in series, the second begins when the first ends. When composed in par-
allel they begin simultaneously, and the following actions do not begin until both
complete. A behavior created using these operations is a directed acyclic graph of
actions with series-parallel structure [23]]; Figure 3] provides a visual example.

As an example, consider the car design shown in Figure d] To create a low-level
“drive-forward” behavior, we simply command all of its wheels to spin in parallel.
The car steers by swiveling its central steering column, so a “turn right” behavior can

8 Tarik Tosun*, Gangyuan Jing*, Hadas Kress-Gazit, and Mark Yim

Sta?
Series(By, By) = @) Pma/hl(&B» Series(Parallel(By, By), By) =
End

Fig. 3: Series and parallel composition

be similarly achieved by commanding parallel actions for the steering column joints.
With these low-level behaviors established, we can command trajectories through
series composition. For example, if we name our car configuration c: c. square =
series(c.drive, c.turn, c.drive, c.turn, c.drive, c.turn,
c.drive, c.turn).

This paradigm allows low-level behaviors to be coded quickly and easily. How-
ever, the real value comes from its ability to combine behaviors in layers and
quickly generate behaviors for complicated designs. This works particularly well
when designs are made by composing smaller designs. For example, we can de-
velop “drive” and “turn” behaviors for the 18-module backhoe shown in Figure]
(name bh) by composing behaviors of its component car designs (named c1 and
c2): bh.drive = parallel(cl.drive, c2.drive), and bh.turn =
parallel (cl.turn, c2.turn). Each of these one-line statements com-
mands the movement of 28 degrees of freedom.

We can extend this further to generate high-level behaviors for the backhoe. Sup-
pose that the arm has a laser rangefinder attached to the end, and that we’ve already
created a “scan” behavior that sweeps or rotates the sensor. We might create a “pa-
trol” behavior that scans continuously while driving in a square: bh.patrol =
parallel (bh.scan, bh.square). Or, if we only want the robot to scan
the corners of a room, we can precisely specify this using lower-level behaviors:
bh.cornerScan = series (bh.drive, bh.scan, bh.turn, bh.drive,
bh.scan, bh.turn, ...).

Building behaviors in this layered fashion makes it easy to re-use code and
quickly generate complicated behaviors. Of course, there is no guarantee that two
composed behaviors will be compatible; it is possible to mistakenly create behaviors
that are impossible or dangerous to execute. For this reason, we provide verification
tools that automatically identify problems - for example, if two behaviors composed
in parallel commanded the same DoF simultaneously (a problem we call behavior
conflict), this would be automatically identified. Our verification tools are explained
in detail in Section [4.3]

Our emphasis on abstraction begs the question: why not use a a more fully-
featured plan execution model such as behavior trees [[15], parallel-hierarchical fi-
nite state machines [20] or even a traditional object-oriented programming language
(like Java or C++)? Our decision was driven by the tradeoff between complexity and
ease-of-use: given our desire for simplicity and speed of programming, we chose a

Computer-Aided Compositional Design and Verification for Modular Robots 9

minimal paradigm with only two composition operations. The language is quite ex-
pressive: we have used it to develop complex behaviors for large designs (see Sec-
tion [6). The language is also limited: it does not yet include conditional statements,
iteration, or access to environmental sensor information (other than joint angles). In
the future, we hope to include these capabilities without sacrificing ease-of-use.

Fig. 4: Car design (left) and backhoe design (right)

4.3 Verification of Configurations and Behaviors

Verification of Configurations: In Section[d.1] we introduced the definition of con-
figuration composition. During the design process, a user might attempt to compose
configurations in a way that is unstable or physically impossible. By incorporating
existing algorithms into the design process, we provide tools to automatically verify
designs during construction, saving time that would otherwise be spent simulating
or testing invalid designs.

Given a configuration % and state Xj, we consider % to be valid in state Xj if
it is gravitationally stable and free from self collision between modules. A robot
is gravitationally stable when it is balanced, and gravity does not create any net
moment on it. If this condition is not met, the robot could tip over and suffer damage.
A self-collision occurs when two different parts of the configuration are commanded
to occupy the same location in space. Self-collisions can also cause damage, and are
almost always unwanted.

To determine gravitational instability and self-collision, we assume that the ge-
ometric, kinematic, and mass information for each module are available. To check
for self-collision, the positions and orientation of all modules are obtained through
forward kinematics as in Definition 2] Our tool checks self-collision by approximat-
ing modules as spheres, and checking the distance (radius) between all pairs. Due to
this approximation, false-positive collisions might be detected. When this happens,
a user can easily spot the faulty detection in the final configuration and choose to
ignore such warning. More sophisticated techniques are available which efficiently
produce exact results [17], at the cost of higher complexity. To offer instant feed-

10 Tarik Tosun*, Gangyuan Jing*, Hadas Kress-Gazit, and Mark Yim

back to the user when designing the configurations, we check gravitational stability
by computing the location of the center of mass of the configuration based on the
known kinematics and mass properties of the modules. We find the set of modules
that have minimal position in the z direction and consider them to be in contact with
the ground plane, treating their centroids as an approximate set of ground contact
points. If the projection of the configuration center of mass onto the ground plane
lies within the convex hull of the ground contact points, gravity exerts no moment
and the configuration is stable.

Verification of Behaviors: In Section we introduced a novel motion descrip-
tion language for modular robots. Like configurations, behaviors are automatically
verified as the user composes them. In addition to being free from self-collision and
gravitationally stable during execution, a valid behavior also must not exceed the
actuator or connector force limits of the modules, and must be free from behavior
conflict.

To verify a behavior with time duration Tp, we discretize execution with a preset
sampling time 7p. At each time step, we first detect behavior conflict by checking
if different commands are given to the same joint of a module simultaneously. If
there is no behavior conflict, we update the positions and orientations of all modules
in the configuration based on the commands. We then check for self-collision and
gravitational instability, using the methods described above. A behavior that results
in self-collision during a single time step is considered invalid. For gravitational
stability, we specify a time bound #,,,; > 5. A behavior is considered unstable if it
includes any period of instability longer than ¢, or if the behavior is unstable at
time Tp (at the end).

To check force limits, unlike other verifications for behaviors, we use an existing
physics engine to detect unsafe conditions during simulation. By setting the maxi-
mum force that can be supported by connectors and exerted by joints, we are able to
identify unsafe behaviors if we detect, during the behavior execution, any undesired
module disconnection or a mismatch between any joints target position and actual
position.

The need for verification becomes more important as design complexity in-
creases. Consider a four-legged Walkbot example shown in Figure [5}1. If the user
sets two of the connections with different angle offset, the composed Walkbot con-
figuration will have two legs pointing in the opposite direction of the other two
legs, as shown in Figure 5} 1. Since the projection of the configuration’s center of
mass now falls out of the supporting base, the program will warn the user that the
configuration is not gravitationally stable. As shown in Figure [5}2, in simulation
the configuration quickly fell to the ground due to the instability as warned by the
program.

Verification of behaviors also aids the user in creating valid and safe robot behav-
iors. When designing the walking behavior for the Walkbot, if the user commands
the front and rear leg at the same side of the robot to swing toward each other at
the same time, the program will warn the user that there will be collision between
modules in this behavior, as shown in Figure [5}3. The image shown in Figure 5}4
demonstrates the moment of collision during simulation.

Computer-Aided Compositional Design and Verification for Modular Robots 11

There is a trade-off between the correctness and the efficiency of the verification.
By reducing the sampling time #,, more potential self-collisions or gravitational
instability can be detected with the cost of longer computation time. However, since
there is no real-time requirement (verification is done during the design process, not
at runtime), the computational cost of fine-resolution verification is worthwhile in
most cases.

Modules all have limits on the maximum force that is available to maintain con-
nections with other modules and to drive each joint to desired positions. Thus, it
is crucial to notify the user if there is no sufficient force from the module’s hard-
ware to execute a behavior while maintaining all module connections. As shown in
Figure [3}5, the program detected a disconnection when the user tried to lift a long
cantilever arm. Figure[5}6 demonstrates the disconnection in simulation.

There is a self-collision between left_back:Module_1
and left_front:Module_2.

There is a self-collision between left_back:Module_2
and left_front:Module_1.

There is a self-collision between left_back:Module_2
and left_front:Module_2.

- Thereis a selfcollision between left_back:Module_2
© Command and left_front:Module_2.

| Module SMORES_0 is disconnected from Module
SMORES_0_longarm0

'\\\.‘\‘\-)
Fig. 5: From top and left: (1) The design tool warns the composed configuration is
not gravitationally stable; (2) The robot fell to ground plane due to instability, in
simulation; (3) The design tool indicates there is collision during the behavior ex-
ecution; (4) Two feet of the robot collided during simulation; (5) The design tool

indicates there is undesired disconnection; (6) The configuration disconnected dur-
ing simulation.

12 Tarik Tosun*, Gangyuan Jing*, Hadas Kress-Gazit, and Mark Yim
5 Implementation

Our implementation currently supports only the SMORES modular robot [7],
but could easily incorporate any other modular robot for which kinematic, geomet-
ric, and mass information is available. Each SMORES modules has four DoF - three
continuously rotating faces called turntables and one central hinge with a 180° range
of motion (Figure Q-l). The DoF marked 1, 2, and 4 have rotational axes that are
parallel and coincident. Each SMORES module can drive around as a two-wheel
differential drive robot. SMORES modules may connect to one another via mag-
nets on each of their four faces, and are capable of self-reconfiguration. Formally,
we denote the state of a SMORES module as X = {0, 0g, 0r, 05} and the set of
attachment points as A = {L,R, T, B}.

A design interface was implemented to aid users in building complex configura-
tions and behaviors from a set of basic configurations and associated behaviors, and
then verifying their correct execution. We separated the design tool into two main
parts: a configuration builder and a behavior builder. Given a set of basic configu-
rations (which could be just single modules), the configuration builder allows users
to combine basic configurations by choosing connection nodes on each configura-
tion, as demonstrated in Figure@ In addition, the configuration builder warns users
when the composed configuration is not stable or contains self-collisions. It does so
without the computation complexity of a physical simulator, e.g. Gazebo [12].

Given a configuration, the behavior builder aids users in designing behaviors
by composing existing behaviors in series and parallel. Figure [f] illustrates a new
behavior composed by putting four basic behaviors in parallel. Similar to the con-
figuration builder, the behavior builder warns users if there are self-collisions or
behavior conflicts during the execution of composed behaviors, without the need of
a physics-based simulator. To check force limits for connections and actuators, we
create a model of the module in the PhysX [1]] physics engine with Unity3D [2]], and
specify joint and connection force limits.

PP = P

Fig. 6: GUIs for configuration builder (left) and behavior builder (right)

Computer-Aided Compositional Design and Verification for Modular Robots 13

6 Examples and User Perspective

Our eventual intention is to develop a large library of configurations and associ-
ated behaviors which are available to all users of our framework, analogous to the
standard libraries of major programming languages. The compositional nature of
our framework will allow users to rely heavily on the library when approaching new
tasks, allowing them to create sophisticated robots very quickly.

As a first step toward a standard library, we present a small library of configura-
tions in Figure[7] Configurations in the library are organized by order, defined recur-
sively as follows: a single module is an order-zero configuration, and the order of all
other configurations is one greater than the largest order of the sub-configurations
from which it is composed. Each configuration has an associated set of behaviors,
which the user can compose to accomplish tasks. New behaviors for a higher-order
configuration can be created by composing the behaviors of its component sub-
configurations.

For the library to be most effective, the set of configurations and behaviors avail-
able at each level (and especially at the lowest levels) should provide a rich set
of functionalities without presenting the user with an overwhelming number of op-
tions. Considering the small library in Figure[7] it is interesting to note that a diverse
set of second- and third-order configurations can be constructed from only one zero-
and one first-order configuration. Developing metrics to evaluate the quality of such
a library is an interesting opportunity for future work.

Figure [8] demonstrates the design flow when a user is designing a configuration
and its behaviors. We present the start-to-end user perspective in designing a compli-
cated configuration called Centaur. Consider the order-1 ‘Chain3” configuration. A
second-order “Grasper” configuration, capable of grasping objects, can be formed
by combining three first-order “Chain3” configurations. Combining two Graspers
allows us to form the legs and body of the third-order “Walkbot” configuration,
now using the Grasper arms as legs for walking, as demonstrated in Figure O} 1. If
we attach another Grasper to the top of the Walkbot (with two additional modules
for structural support), we get the fourth-order “Centaur”, a mobile manipulator, as
shown in Figure [9}2. Connecting multiple lower-order configurations allows us to
quickly develop complex high-order configurations like the Centaur. Given access
to a library already containing the Grasper design, for example, creating the Cen-
taur is involves just two composition steps. The user can then immediately compose
behaviors already associated with the lower-order configurations (like “Walk” and
“Grasp”) to create behaviors for higher-order configurations (like picking up and
carrying an object).

7 Conclusions

In this paper, we presented a design framework that facilitates the rapid creation
of configurations and behaviors for modular robots. Complex configurations are hi-
erarchically constructed from basic subcomponents. We presented a novel motion

14 Tarik Tosun*, Gangyuan Jing*, Hadas Kress-Gazit, and Mark Yim

r 4

~

W
() Chain3
-

Fig. 7: Library of designs, listed by order. Order 0: Module. Order 1: Chain3=3x
Module. Order 2: Car = Chain3 + 4x Module, Grasper = 3x Chain3, PUMA=
Chain3 + Module. Order 3: Walkbot = 2x Grasper, Backhoe = 2x Car + PUMA.
Order 4: Centaur = Walkbot + Grasper + 2x Module.

Unstable or Self-collision no

Build a config-
uration from
a set of basic
configurations

The composed configuration is valid

Create a complex
behavior from
a set of basic

behaviors for this
configuration

1 Unstable or Self-collision __no

Test the configuration and
behavior in simulation

The composed behavior is valid

A library of basic
configurations

or Behavior-conflict
or Force limit reached

Fig. 8: The design flow

Fig. 9: Building the Centaur. (1) Two Graspers are composed to form a Walkbot.
(2) The Walkbot is composed with one more Grasper and two individual modules
to form the Centaur.

Computer-Aided Compositional Design and Verification for Modular Robots 15

description language, which allows existing behaviors to be combined in series and
parallel to create more complex behaviors. The framework verifies configurations
and behaviors, allowing early detection of design flaws, specifically behavior con-
flict, self-collision, loss of gravitational stability, and forces exceeding the limits
of safety for actuators and connectors. In addition to verification, designs can be
evaluated in a physical simulator before testing on hardware.

8 Future

Future work will include expansion of the features of our framework. We hope
to expand the capabilities of our motion description language without sacrificing
ease-of-use, and add more verification tools to assist in problem identification. An-
other area of future work lies in developing a standard library of configurations and
behaviors for the SMORES robot. We will also investigate metrics to evaluate the
quality of such a library. Perhaps most importantly, we will test and evaluate the
designs and behaviors with actual hardware modules. Currently, each behavior is
associated with exactly one configuration. In many cases, a given behavior could be
executed by several different configurations (if it were correctly mapped onto a sub-
set of their modules). In the future, we will apply an embedding detection algorithm
(see [14]) to map behaviors into any configuration capable of executing them.

Finally, while our implementation currently supports only SMORES, other mod-
ular robots could be easily incorporated. In the future, we plan to incorporate support
for the CKbot robot [6] into our software.

References

[1] Physx. http://www.geforce.com/hardware/technology/
physxl Accessed: 2015-04-35

[2] Unity3d. http://unity3d.com/. Accessed: 2015-04-35

[3] Bezzo, N., et al.: Demo abstract: Roslaba modular programming environment
for robotic applications. In: ICCPS (2014)

[4] Casal, A.: Reconfiguration planning for modular self-reconfigurable robots.
Ph.D. thesis, Stanford Univ. (2001)

[5] Christensen, D., Brandt, D., Stoy, K., Schultz, U.P.: A unified simulator for
self-reconfigurable robots. In: IROS (2008)

[6] Davey, J., Sastra, J., Piccoli, M., Yim, M.: Modlock: A manual connector for
reconfigurable modular robots. In: IROS (2012)

[7] Davey, J., et al.: Emulating self-reconfigurable robots: Design of the smores
system. In: IROS (2012)

[8] Fukuda, T., Kawauchi, Y.: Cellular robotic system (cebot) as one of the real-
ization of self-organizing intelligent universal manipulator. In: ICRA (1990)

[9] Hornby, G.S., Lipson, H., Pollack, J.B.: Generative representations for the au-
tomated design of modular physical robots. ICRA (2003)

[10] Huang, J., et al.: Rosrv: Runtime verification for robots. In: Runtime Verifica-

tion, pp. 247-254. Springer (2014)

http://www.geforce.com/hardware/technology/physx
http://www.geforce.com/hardware/technology/physx
http://unity3d.com/

16 Tarik Tosun*, Gangyuan Jing*, Hadas Kress-Gazit, and Mark Yim

[11] Kasper Stoy David Brandt, D.J.C.: Self-reconfigurable robots: an introduction.
MIT Press (2010)

[12] Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: IROS 2004 (2004)

[13] Lipson, H., Pollack, J.B.: Towards continuously reconfigurable self-designing
robotics. In: ICRA (2000)

[14] Mantzouratos*, Y., Tosun*, T., Khanna Sanjeev, Y., Mark: On embeddability
of modular robot designs. In: ICRA (2014)

[15] Marzinotto, A., Colledanchise, M., Smith, C., Ogren, P.: Towards a unified
behavior trees framework for robot control. In: ICRA (2014)

[16] Mehta, A., et al.: A design environment for the rapid specification and fabri-
cation of printable robots. In: ISER (2014)

[17] Pan, J., Chitta, S., Manocha, D.: Fcl: A general purpose library for collision
and proximity queries. In: ICRA (2012)

[18] Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler,
R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop
on Open Source Software (2009)

[19] Salemi, B., Shen, W.M., Will, P.: Hormone-controlled metamorphic robots. In:
ICRA (2001)

[20] Sklyarov, V., Skliarova, I.: Design and implementation of parallel hierarchical
finite state machines. In: Communications and Electronics, 2008. ICCE 2008.
Second International Conference on, pp. 33-38. IEEE (2008)

[21] Sproewitz, A., Moeckel, R., Maye, J., Ijspeert, A.J.: Learning to move in mod-
ular robots using central pattern generators and online optimization. The In-
ternational Journal of Robotics Research 27(3-4), 423-443 (2008)

[22] Stoy, K., Shen, WM., Will, PM.: Using role-based control to produce loco-
motion in chain-type self-reconfigurable robots. Mechatronics, IEEE/ASME
Trans. on (2002)

[23] Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel di-
graphs. In: Proc. ACM symp. on Theory of comp. (1979)

[24] Walter, J.E., Tsai, E.M., Amato, N.M.: Choosing good paths for fast distributed
reconfiguration of hexagonal metamorphic robots. In: ICRA (2002)

[25] Yim, M.: Locomotion with a unit-modular reconfigurable robot. Ph.D. thesis,
Stanford (1994)

[26] Yim, M., Duff, D.G., Roufas, K.: Modular reconfigurable robots, an approach
to urban search and rescue. In: 1st Intl. Wkshp. on Human-friendly Welfare
Robotics Systems (2000)

[27] Yim, M., Duff, D.G., Roufas, K.D.: Polybot: a modular reconfigurable robot.
In: ICRA (2000)

[28] Yim, M., et al.: Modular self-reconfigurable robot systems. Robotics & Au-
tomation Mag., IEEE (2007)

[29] Yoshida, E., et al.: A self-reconfigurable modular robot: Reconfiguration plan-
ning and experiments. IJRR (2002)

[30] Zhang, Y., et al.: Phase automata: a programming model of locomotion gaits
for scalable chain-type modular robots. In: IROS (2003)

	Computer-Aided Compositional Design and Verification for Modular Robots
	Tarik Tosun*, Gangyuan Jing*, Hadas Kress-Gazit, and Mark Yim
	Introduction
	Related Work
	Definitions
	Approach and Algorithm
	Configuration Composition
	Behavior Composition: Series-Parallel Action Graphs
	 Verification of Configurations and Behaviors

	Implementation
	Examples and User Perspective
	Conclusions
	Future
	References

