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Abstract— The paper presents a model for adding stabilizers
to a flying device without rotational momentum (such as
quadrotors or ornithopters) that will create passively stable
vehicles in hover. This model enables the design of the size
and location of these stabilizers that will vary the stability
and performance of the vehicle. The model is verified with
nine experimental vehicles that span the stability design space.
Passive stability allows the removal of costly inertial sensors
and increases the robustness of the vehicle. Analysis of the cost
and drag that impacts flight performance is also discussed.

I. INTRODUCTION

There has been an increasing interest in micro air vehi-
cles (MAVs). These robotic air vehicles can hover and be
arbitrarily positioned in 3D space. The applications range
from search and rescue of hazardous or unreachable locations
to delivery of payloads and most recently to toys. Simple,
low-cost MAVs could also democratize the use of these
devices and fit many consumer applications including robotic
information aids and personal assistants.

Four-propeller MAVs, called quadrotors or quadcopters,
are becoming popular as seen by commercially available de-
vices for the consumer market. The stability of these vehicles
is not trivial, but now can be considered a solved problem
- as evidenced by the available commercial devices [1] [2]
[3]. To do this, inertial sensors must estimate the vehicle’s
orientation and a closed-loop controller must actuate the
rotors to lead to stable hover and flight.

If the MAVs had passive stability, they would not require
expensive inertial sensors nor active closed-loop control to
keep from crashing. While inertial sensors and microcon-
trollers have become much cheaper, enabling the current
explosion in commercially available quadrotors, they still
remain the most expensive components in small quadrotors
as will be shown. Passive stability would lower the cost and
also make them more robust to control failures, such as bad
data from sensors, control software, or damaged actuators.
Furthermore, many MAVs already have protection cages,
which could double as stabilizers [4].

Passively stabilized flying vehicles have been around for
many years. For example, some full sized helicopters have
flybars or paddles and some airplanes use wing dihedral
and tail horizontal and vertical stabilizers. The helicopter
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Fig. 1: Prototype test platform.

stabilizers are inertial, in that they reference inertia (via gyro-
scopes), while the airplane stabilizers are aerodynamic and
reference the surrounding air. When hovering vehicles are
aerodynamically stabilized, they are hovering with respect
to the wind around them whether the air is stationary, like
indoors, or moving at high velocities.

Recognizing that cost is the most important concern,
most manufacturers of toy helicopters have adopted these
techniques, simplifying control as well. They have also
scaled down these mechanisms to MAVs on the order of
tens of grams. Most of these MAVs omit the actuators and
mechanisms for roll and/or pitch control in order or reduce
size and weight, yet the passive stabilizers are able to keep
the vehicle upright [5] [6]. Some of the disadvantages of
adding passive stabilizers include the increased mass from
the stabilizers and the power cost when operating away
from the stable state. In related work by the authors [5],
two classes of aerodynamic passive stability for hovering
vehicles were identified, one for vehicles with large angular
momentum and one for vehicles with no net angular momen-
tum. This past work focused on rotorcraft with net angular
momentum. This paper focuses on vehicles with little net
angular momentum, which includes even numbered multi-
rotor vehicles such as quadrotors, coaxial helicopters, and
tandem helicopters, as well as ornithopters, like the robobee,
and hovering rockets [6]. It is important to distinguish
between these two classes, specifically focusing on angular
momentum, as they emphasize conflicting design parameters.
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The essential property for aerodynamic stability in hover in
the no angular moment case is to have the center of pressure
(COP) in horizontal flow above the center of mass (COM),
or COP > COM. Emphasizing this property in a vehicle with
large angular moment destabilizes the system.

Other vehicles have used this COP > COM principle
in flapping wing devices [6] [7]. In these cases, passive
drag sails were placed above and below the vehicle and
were developed to help stabilize the vehicle; however, design
parameters (e.g. size and location of the drag sails) were
not extensively analyzed. Other systems could benefit from
COM > COM stabilization, such as low altitude weather
monitoring devices, indoor draft detection, and safe yet low
cost indoor fly toys.

II. VEHICLE DESCRIPTION

The generic requirements for this system is a vehicle
that can create thrust while hovering with no net angular
momentum. In our case, we attach stabilizers, sometimes
called dampers or drag sails, to a quadrotor. Typically, one
stabilizer is above the COM and a second is below the COM.
See Fig. 1 as a reference. The top stabilizer provides the
desired COP > COM moment, which restores the vehicle’s
attitude to vertical. The bottom stabilizer is added to increase
the effective damping by both increasing linear and angular
damping as well as reducing the net COP > COM moment.

If both the top and bottom stabilizer are the same size,
shape, and distance from the COM, then the COP = COM,
there is no restoring moment (ignoring effects from the
vehicle itself), and the stabilizers are purely linear and
angular dampers. Net forces from rotating are eliminated
when the top and bottom plates are well matched. Although
uncommon, a single, well sized top stabilizer can provide
both the COP > COM moment and sufficient damping. The
below algorithms are capable of finding such configurations.

A. Vehicle Dynamics

Much of the notation and equations are taken from [8],
which defines u, v, w, p, q, r as the X, Y, Z linear and
angular velocities in the body frame. φ, θ, ψ are the X, Y,
Z world to body Euler angles. X , Y , Z, L, M , N are the
X, Y, Z forces and moments in the body frame. When a
force is subscripted by a velocity it becomes an acceleration
sensitivity. For example, Xu = ∂X

m∂u or Lq = ∂L
IXX∂q

.
In [5], a linear time invariant (LTI) model with small angle

approximations of a flying vehicle constrained to a horizontal
plane, such as an altitude controlled MAV, is:
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Because the vehicle is symmetric about the XZ plane and
YZ plane, Xu = Yv , Xv = −Yu, Xp = Yq , Xq = −Yp,
Lu = Mv , Lv = −Mu, Lp = Mq , and Lq = −Mp.
Furthermore, this symmetry leads to Xv = −Yu = 0

and Xp = Yq = 0. Lu and Mv are generally caused by
differential lift on propellers, which we assume to either
be zero or cancel with all of the other propellers, as is the
case with quadrotors. Lq and Mp are frequently the result
of gyroscopic precession. Again, we assume the vehicle’s
net angular momentum is zero so that no precession occurs.
The last two simplifications are not true for the vehicles
mentioned in [5]. Xq and Yp go to zero for vehicles whose
stabilizers create a pure moment when rotated. We assume
this is the case, although it is not guaranteed, and more
exotic designs would benefit from leaving in these terms.
We keep the remaining coefficients. Xu and Yv represent
linear drag. Lv and Mu are the rotational moments from
linear motion and represent the COM vs COM interaction.
Lp and Mq represent angular drag. We note that now u, q,
and θ are dependent on each other, v, p, and φ are dependent
on each other, and both sets are independent. We continue
by examining linear x and angular y motion, noting that
the system behaves identically in the linear y and angular x
direction. The resulting linearized state equation becomes:
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Xu 0 −g
Mu Mq 0
0 1 0





u
q
θ


 (2)

B. Vehicle Aerodynamics
We now need to fill in Xu, Mu, and Mq with our design

parameters. We define drag as the force felt in the direction
of wind and lift in the direction perpendicular to wind.
Vehicles operating on pure drag assume that no wind from
the thrust producing components of the vehicle blows across
the stabilizers [6]. The coefficients generated by this method
are significantly smaller than values extracted by test data
with our vehicle.

For our vehicle, the inflow from the propellers create
wind in the vertical, positive z direction. The vehicle’s
motion in the world creates the horizontal components of
wind. Together, these two sources of wind create angles of
attack of less than 10◦ from the z axis, which falls under
both the linear region of the lift slope curve and the small
angle approximation. Thus, the lift from this mechanism
is linear with u motion and is felt along the x axis. Note
that vertical motion also contributes to wind in the vertical
direction, where rapid descents can cancel the propeller’s
inflow and the aerodynamics fall back to the lower magnitude
drag equations. For the remainder of this discussion we
assume there is no vehicle motion in the vertical direction.
Furthermore, fluid flow through and around rotors is quite
complicated and the analysis below is only a guideline.

Momentum theory states that T = mg = 2ρApν
2 where

T is thrust, m is the vehicle mass, g is the acceleration
from gravity, ρ is surrounding air density, Ap is the propeller
disc area, and ν is the inflow velocity. We assume ν >> u
such that ν2 + u2 ≈ ν2 and arctan(uν ) ≈ u

ν . Similarly,
we assume ν >> qd where d is the distance between the
center of mass and a stabilizer element. These assumptions
hold for a limited flight envelope which is vehicle dependent
and is discussed for a test vehicle in Section IV-A. We also
include an adjustment term, β = 0.5, when computing the



wind velocity near the stabilizers to account for un-modeled
aerodynamic effects and rotor-stabilizer proximity, resulting
in ν =

√
mg/(2ρAp)β.

The force generated by the stabilizers is F =
1/2ρν2ACl(α) where α is the angle of attack, Cl(α) = 2πα
is the coefficient of lift at a given angle of attack, and A is
the area of the stabilizer element.

With α = −u
ν and breaking A into the stabilizer width w

and height d, Xu and Mu are:

Xu = ρν2w(

∫ d2

d1

dd+

∫ d4

d3

dd)2π(−u)/(2νmu)

= ρνw((d1 − d2) + (d3 − d4))π/m (3)

Mu = ρν2w(

∫ d2

d1

ddd+

∫ d4

d3

ddd)2π(−u)/(2νIu)

= ρνw((d21 − d22) + (d23 − d24))π/(2I) (4)

For angular rates, α = −dq
ν and Mq is:

Mq = ρν2w(

∫ d2

d1

d2dd+

∫ d4

d3

d2dd)2π(−q)/(2νIq)

= ρνw((d31 − d32) + (d33 − d34))π/(3I) (5)

For higher fidelity, m and I should be a function of d1, d2,
d3, and d4 as well.

III. STABILITY

Now that we can adequately describe our vehicle, we can
begin our stability analysis. For our hovering vehicles, we
define stability as having a bounded angle from vertical and
a bounded velocity in response to a disturbance with an
ultimate return to upright and no velocity. Smaller bounded
angles and velocities are better. Active vehicle controllers
sense the vehicle’s state and manipulate actuators to correct
its state. Passively stabilized vehicles do not possess a
controller in the directions that are passively stabilized. For
example, helicopters that have flybars are passively stable in
roll and pitch, but require active yaw and altitude controllers.
On human-scale helicopters with large time constants, the
active controllers are the human pilots themselves.

A. Routh-Hurwitz Stability Criteria

The Routh-Hurwitz stability criterion is an efficient, nec-
essary, and sufficient method for determining if an LTI of
the form ẋ = Ax is stable using its characteristic equation,
det(A − λI) = 0. A third order characteristic polynomial
has the form a3s

3 + a2s
2 + a1s

1 + a0. The criteria states
that if a3, a2, a1, a0 > 0 and a2a1 > a3a0 then the system
is stable. The characteristic polynomial of Equation 2 is
s3 − (Xu + Mq)s

2 + XuMqs + Mug. The combination of
a2 = −(Xu + Mq) > 0 and a3 = XuMq > 0 requires
that both Xu < 0 and Mq < 0. This makes sense since
both of these terms represent drag, which is felt in the
direction opposite to motion. The constraint a0 = Mug > 0
requires that Mu > 0 since g is positive (recall in our
coordinate system z is down), which says that the net COP
must be above (more negative than) the COM. Finally,
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Fig. 2: Root locus varying d2, holding d1 = −0.16 m, d3 =
0.05 m, d4 = 0.14 m. Tested configurations are highlighted.

a2a1 = −(Xu +Mq)XuMq > a3a0 = 1Mug demands that
Mu < −(Xu + Mq)XuMq , which we know is a positive
number and is an aerodynamic damping requirement. This
is the constraint of most interest because it puts an upper
bound on the amount of COP > COM moment that the
vehicle produces and is not frequently discussed [6] [7].

B. Root Locus

The Routh-Hurwitz stability criterion provides us impor-
tant vehicle guidelines to make stable vehicles, but ultimately
we want to know how stable. By computing the eigenvalues,
λ, of our LTI, we can find time constants, τ , and damping
ratios, ζ, of our vehicle. Our target is to find vehicles that are
critically damped (damping ratios of one) so that our vehicle
can have a fast and stable response to disturbances.

To design the desired stability we can explore the space
of eigenvalues. Computers can quickly numerically calculate
the eigenvalues of configurations. Once computed, we can
search for parameters, including fastest response, least mate-
rial, least linear drag, highest safety margin of stability, etc.
Fig. 2 shows a root locus and highlights three configurations
chosen for experiments. (a) tests the behavior of low damping
ratio configurations. (b) shows borderline stable behavior. (c)
confirms that vehicles with Mu < 0 are indeed unstable.

IV. EXPERIMENTS

A. Test Vehicle Design

The base of the test vehicle is a standard quadrotor
stemming from a low cost design [9]. Although this specific
vehicle has an IMU, an Invensense MPU-6050, its informa-
tion is used for reporting purposes only. Unlike all other
quadrotors, there is no active attitude controller running.

Rods are positioned at a distance such that stabilizers
strung between them have a 5 mm clearance from the pro-
pellers, making the width of the stabilizers 0.135 m shown
in Fig. 1. Despite this, we do not use any configurations
that have material near the propellers to ensure that the
stabilizers do not collide with the propellers during crashes
and aggressive maneuvers. The placement also creates a
cage, allowing for safe flight in cluttered environments. The
stabilizers are 0.0005 in polyester film and cut with a laser
cutter or vinyl cutter. We include tabs and slots on the ends of



(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 3: Side-by-side comparison of the nine tested configurations

Quad m IY Y d1 d2 d3 d4
g g cm2 m m m m

(a) 39.6 1110 -0.16 -0.05 0.05 0.14
(b) 39.2 1070 -0.16 -0.09 0.05 0.14
(c) 39.0 1050 -0.16 -0.11 0.05 0.14
(d) 40.0 1120 -0.16 -0.06 0.00 0.14
(e) 40.1 1130 -0.16 -0.05 0.00 0.14
(f) 39.8 1100 -0.16 -0.85 0.00 0.14
(g) 39.7 1090 -0.16 -0.95 0.00 0.14
(h) 37.4 620 -0.11 -0.065 0.02 0.09
(i) 37.2 611 -0.10 -0.05 0.05 0.10

TABLE I: Tested vehicle configurations

the sheet to make a loop. The design has slots for threading
the rods through the stabilizer.

To find the flight envelope that is valid for the assumptions
in Section II-B, we set a target mass of 40 g. For that mass
and a square duct of side length 0.135 m, ν = 2.90 m s−1.
The linear lift coefficient versus angle of attack assumption
generally holds until stall, which usually occurs between 10◦

to 15◦. An angle of attack of 10◦ occurs at a horizontal
velocity of 0.52 m s−1, which is 3.9 body lengths per second.
The ν2 +u2 ≈ ν2 and arctan(uν ) ≈ u

ν assumptions result in
1.5% and 1.0% error respectively at this velocity, indicating
their validity for this vehicle.

B. Vehicle Testing

We test numerous stabilizer configurations to verify that
our analysis emulates the real world. Each configuration
is placed on the ground in the center of a 3 m long by
3 m wide by 4 m tall room. A Vicon [10] motion capture
system tracks the vehicle with a precision of 50 µm at up
to 375 Hz [2]. A position and yaw controller runs off-board
on a PC at 100 Hz, which sends motor voltage commands to
the vehicle. This differs from a traditional quadrotor where
the position controller sends a desired vehicle attitude, and
an inner attitude controller on-board the vehicle attempts to
achieve it. Instead, we rely on the stabilizers to replace the
inner attitude control loop.

Through position control, the quadrotor takes off and
climbs to over 1.5 m from the ground. The x, y, and yaw
controllers are then switched off, leaving only the z con-
troller, causing all four motors to receive the same voltage
commands. This condition emulates the math derived in
Section II-A. Natural air currents perturb the vehicle.

We build nine configurations picked from the stability
analysis to test the model validity at different points in the
design space. The design parameters for each vehicle are
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Fig. 4: Eigenvalues of the tested configurations

listed in Table I. The predicted eigenvalues for these variants
are shown in Fig. 4.

Designs (a), (b), and (c) are from the same family of
stabilizers, all with a 0.3 m rod, d3 = 0.05 m, and d4 =
0.14 m. Essentially, we are trading between the sizes of the
top stabilizer and the gap between the top stabilizer and
the COM. Vehicle (a) has the lowest predicted damping
ratio of this family and is exploring the practical limits of
low damping ratios. Variant (b) is predicted to have the
least stability while still remaining a stable configuration.
Configuration (c) should have a COP < COM, causing it to
immediately fall over.

Like (a) through (c), vehicles (d) through (g) are also in
their own family. These have a rod length of 0.3 m, d3 =
0.00 m, and d4 = 0.14 m. Configuration (d) is predicted to be
the most stable (min(max(real(λ)))) vehicle of those with
a rod length of 0.3 m. Variant (e) has the lowest damping
ratio of this family, and again is exploring the lower limit of
damping ratios. Vehicle (f) is the closest unstable vehicle to
being stable, while vehicle g is solidly unstable.

In general, it is desirable to use less material. Configu-
ration (h) is predicted to be the most stable vehicle with a
rod length of 0.2 m, reducing the material used by a third.
Variant (i) is a follow-up vehicle discussed in Section V-A.

C. Experimental Results

There are four easily identifiable cases of stability. The
first is that the vehicle is stable and over-damped. This is
characterized by a slow response and no oscillations. The
eigenvalues of these vehicles are all negative real with no
imaginary parts. We will label this case as λ < 0, ζ > 1. We
group critically damped vehicles in this category as cursory
examination cannot discern the difference.

In the second case the vehicle is stable and under-damped,
having a faster response, but also overshoots and oscillates.



Quad Predicted Predicted Actual Actual
λ vs 0 ζ vs 1 λ vs 0 ζ vs 1

(a) < < < <
(b) < > < <
(c) > > > >
(d) < < < <
(e) < < < <
(f) > > < >
(g) > > > >
(h) < < > <
(i) = > < >

TABLE II: Predicted and actual stability. Those that do not
follow predictions are highlighted in red.

Their eigenvalues have negative real components, but also
imaginary components. These are labeled λ < 0, ζ < 1.

In the third case, the vehicle has a COP < COM and the
vehicle is unstable. The COP < COM (Mu < 0) causes the
vehicle to turn toward the direction of motion, and is the
result of the bottom stabilizer dominating. These vehicles
have positive real eigenvalues with no imaginary parts. Their
labels are λ > 0, ζ > 1, even though damping ratios are not
typically used in unstable systems.

Finally, the forth case is when the vehicle has insufficient
damping and is unstable. Here, the COP > COM moment is
too strong and the vehicle over-corrects, causing increasing
oscillations. The eigenvalues are positive real with imaginary
components. They are labeled as λ > 0, ζ < 1.

Time series of some of the test flights are provided in
Figures 5a to 5d. Actual values are those reported by a Vicon
motion capture system. Desired values are the positions
commanded by the position controller. In the beginning 2 s
to 4 s of each time series the vehicle is flown to between
1.5 m to 2.5 m under full position control. When the x, y,
and yaw controllers are switched off, the desired positions
and the actual positions are the same.

Configuration (a) in Fig. 5a, chosen for exploring low
damping ratios, behaves as expected. Both the x and y
directions have 1.5 s oscillations which are very lightly
damped, and close to the 1.77 s predicted by the eigenvalues.
In gusty conditions, the light amount of damping may not
be able to keep the vehicle upright.

Vehicle (b) in Fig. 5b is less damped than expected. It is
predicted to be over-damped, but is actually lightly under-
damped with an oscillation period of 4 s.

Variant (c) in Fig. 5c shows the x and y velocities growing
to the limits of the room with no oscillations. This is
characteristic of COP < COM. Interestingly, the position
controller is sufficient to stabilize this vehicle during climb,
indicating that it is only slightly unstable as predicted.

Configuration (d) in Fig. 5d, chosen for its fast and
lightly under-damped response time, behaves as expected.
The 2.25 s oscillations are heavily damped and are very close
to the predicted period of 2.76 s. The horizontal velocities do
not grow beyond 0.35 m s−1.

V. DISCUSSION

A. Theory Verification

The majority of experiments are consistent with theory.
Five of the nine configurations behave as expected. When the
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(a) Configuration a: stable but very under-damped.
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(b) Configuration b: stable and lightly under-damped.
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(c) Configuration c: unstable and fails the Mu > 0.
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(d) Configuration d: stable, lightly under-damped, and
demonstrates the desired response.

Fig. 5: Test flights of configurations (a),(b),(c), and (d)

vehicles are predicted to be under-damped, their oscillation
periods are similar, yet all are lower than predicted. This is
potentially explained by the lack of an Xq term in the model.

Three of the first eight experiments do not match theory.
All three show a push towards more negative reals, then more
imaginary eigenvalues. This is characteristic of less damping
than expected, and can happen if either the top stabilizer
produces more lift and/or the bottom stabilizer produces
less lift than expected. The inflow, described in Section II-
B, around an unobstructed rotor contracts in its wake. One
possible explanation that the airflow contracts below the
quadrotor’s propellers, creating a high velocity channel of



What Crazyflie Ladybird V1 Passive 1 Passive 2
Retail $ 116.00 89.00 - -
µc 32F103CB XMEGA16D4 32F373CB ATtiny9
µc $ 2.82 0.97 2.47 0.39
Accel MPU-6050 ITG-3205 None None

Accel $ 4.62 3.67 0.00 0.00
Gyro MPU-6050 MMA8452Q None None

Gyro $ (4.62) 0.73 0.00 0.00
Passive $ - - 3.54 0.24

Total 7.44 4.64 6.01 0.63

TABLE III: Vehicle costs for a run of 1000 in USD

air between the stabilizers and less airflow near them. This
suggests the β adjustment term should be different for the
top and bottom stabilizers. If this is the case, a vehicle with
an even distribution of stabilizers above and below the COM
should have a COP > COM. We use the follow-up vehicle,
(i), shown in Fig. 1 to test this idea. This configuration is
indeed stable, but has a large bounded linear velocity.

Another observation is that when the controllers turn off,
all of the vehicles move in the negative x and positive y
directions. In fact, a close look at Fig. 5c shows that the
vehicle even changes direction when the controllers turn off.
This is consistent with either an unbalanced vehicle in either
thrust or mass distribution, which favors one side of the
vehicle versus another, or the wind in that location of the
room is higher than vehicle (c)’s speed.

The main goal of this analysis is to provide a tool for
finding quality configurations analytically or numerically,
not experimentally. Configuration (d) is the result of this
search for our quadrotor. With this set of stabilizers, the
vehicle is not only stable without an attitude controller, but
is capable of following trajectories like any other quadrotor.
Furthermore, it is robust to large wind gusts and crashes.1

B. Vehicle Cost
One of the main advantages of a passively stabilized

MAV is its reduction in cost. In Table III we see the
cost of the stabilizing components of three actual and one
theoretical quadrotor of similar size: the Bitcraze Crazyflie,
Walkera Ladybird V1, our passive quadrotor, and a cost
optimized passive quadrotor. For a fair comparison, all prod-
ucts were reverse engineered and component costs are listed
for production runs of 10002. Not only can we remove the
accelerometer and gyroscope from the passive quadrotor, but
the microcontroller no longer estimates attitude and controls.
A simpler and lower cost microcontroller only reads voltage
commands from the radio and outputs them on four PWMs.

The added components are the four rods, assumed to be
0.3 m each, and 4×0.3 m×0.135 m = 0.162 m2 of film. The
rods cost 2.62 $/m and film costs 2.34 $/m2. This leaves
the added cost of the passive mechanism to be 4 × 0.3 ×
2.62+0.162×2.34 = $3.52, which on par with the cheapest
quadrotors’ electronics and without any cost optimization.
Replacing the carbon fiber rods with birch wood at 0.23 $/m
and the polyester film with polyethylene at 0.09 $/m2 the
cost is merely $0.24. Thus, passive stability can save nearly
an order of magnitude on control costs.

1See accompanying video for trajectory following and perturbation demo.
2Prices from Octopart, McMaster-Carr, and Dragonplate on Feb. 26, 2015

C. Efficiency Effects
To fly, aerial vehicles must support their own weight, so

the vehicle’s mass is a critical design constraint. Although
we can remove the accelerometer and gyroscope, the mass of
the vehicle is not significantly reduced. The base quadrotor
weighs 33 g, while the configurations with 0.3 m rods weigh
roughly 40 g, which requires 21% more thrust for hover.

Assuming the translational drag on the quadrotor itself
remains the same, the added thrust required to move linearly
can be derived from Xu. The horizontal force F = mXuu.
As mentioned in Section IV-A, the linear assumptions hold
up to 0.52 m s−1 and perhaps faster depending on the onset
of stall. Of the configurations with a rod length of 0.3 m,
the average predicted X̄u = −3.98, resulting in the added
thrust requirement of F = 3.98 × 0.04u = 0.159uN. For
example, the hover thrust of our vehicle is mg = 0.04 ×
9.81 = 0.392N and the linear drag force moving at 0.5 m s−1

is F = 0.159 × 0.5 = 0.080N. So, the required thrust to
translate is

√
(mg)2 + F 2 = 0.401N, a 2.1% increase.

VI. CONCLUSION
In this paper, we analyzed the effects of lifting stabilizers,

predicted their stabilizing traits, confirmed the analysis by
building flying vehicles, and reviewed some benefits and
drawbacks. Throughout the analysis new and interesting
problems arose. The cause of the over-prediction of the
bottom stabilizer’s force or the under-prediction of the top
stabilizer’s force remains an open problem. A similar anal-
ysis on yaw may provide useful as the vehicle currently has
no controller in this direction. Perhaps most interesting is
when these vehicles stop creating thrust while in flight, they
rotate horizontally and glide safely and slowly toward the
ground. Future vehicles should incorporate these unexplored
features for even safer and more stable MAVs.
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