Modlab The Modular Robotics Laboratory at the University of Pennsylvania

Modlab
CKbot
SEAL Pack
SEAL Pack

The SEAL Pack is versatile, portable, and quickly deployable, similar to the Navy SEALs.  SEAL stands for SEa, Air, and Land and the SEAL Pack is versatile enough to traverse all three.  The SEAL Pack is transported in a compact way, and can be unpacked into either a car, boat, or quadrotor in a matter of minutes thanks to its modular design.

BalletBot
BalletBot

The Modular Robotics Laboratory (Dean Wilhelmi, Stella Latscha, Matthew Piccoli) collaborated with other technology studios from Penn (IKStudio under Simon Kim) and Harvard, as well as dance studio Carbon Dance Theatre (co-choreographers: Meredith Rainey & Marcel W. Foster) to create a dance performance blending art and technology called Science Per Forms.

X-Face
X-Face

Docking and undocking are common activities for robots (modular robots in particular). The relative frequency of this operation behooves us to ensure reliable alignment under uncertain conditions. We present a new face geometry that is numerically superior to existing alignment geometries. This geometry is intended for two-dimensional reconfigurable robots.

ModLock
ModLock

Connection mechanisms are critical to modular reconfigurable systems. The ModLock manual connection system is both fast to attach/detach and strong. This low cost, low profile connection system has been demonstrated on a variety of robot configurations including legged walkers, flying quadrotors and wheeled robots.

SMORES
SMORES

The design of this system called SMORES (Self-assembling MOdular Robot for Extreme Shapeshifting) is capable of rearranging its modules in all three classes of reconfiguration; lattice style, chain style and mobile reconfiguration. Modules are independently mobile and are capable of self-assembly from a collection of disconnected modules.

Structure synthesis on-the-fly
Structure synthesis on-the-fly

Hard foam can be used to synthesise a body on-the-fly, allowing us to spray a body for this quadruped. Each of the limbs comprises three CKBot modules, in a configuration similar to that used in the self-assembly after explosion project.

Search and Rescue
Search and Rescue

Can small man-portable robots aid the transport of incapacitated victims? This work received the Best Paper Award at the 2009 IEEE International Workshop on Safety, Security, and Rescue Robotics.

Factory Floor
Factory Floor

The factory floor is an experimental robotic system for the construction of passive robotically-reconfigurable truss structures. The macroscopic goal of this work is to embed autonomous reconfigurability into human-built systems.

CKbot
CKbot

The CKbot (Connector Kinetic roBot) is a chain style modular robot. It is designed to be fast and inexpensive while small enough to fit inside a 3 inch tube. It is manually reconfigurable into any shape while also allowing attachments such as wheels, grippers, IR proximity sensors and camera modules.

Self re-Assembly after Explosion
Self re-Assembly after Explosion

A car bumper is designed to crumple upon impact and protect the driver. A ski boot will detach from the ski to prevent injury to the ankle. Likewise a CKbot assembly falls apart when it is kicked, however CKbot can put itself back together again.

Dynamic Locomotion of CKBot
Dynamic Locomotion of CKBot

CKBot is designed to be fast allowing it to achieve dynamic locomotion. Given that CKBot is reconfigurable gives us the unique ability to research different types of dynamic locomotions in different morphologies all with the same hardware.

Distributed Communication Fault Tolerance
Distributed Communication Fault Tolerance

An advantageous feature of modular robots is the applicability to system fault tolerance. With redundant units and parallel processing facilities, modular robots have the capability or potential to account for certain types of failures within its system. This research presents work on communication fault tolerance with CKBot.

Configuration Recognition
Configuration Recognition

The advantage of reconfiguration is central to modular robotic systems. With this benefit, however, comes a complex and interesting challenge: how does a modular robot recognize which shapes are useful or familiar? The ability for a modular robot to determine which configurations are needed for various tasks is a fundamental requirement for increased autonomy.